//package: starlab //date: 11-feb-95 //author: Piet Hut //task: mkplummer //does: constructs a Plummer model, with a spatial or mass cut-off //index: model, init //also: mkcube //history: // // version 1: July 1989 Piet Hut email: piet@iassns.bitnet // Institute for Advanced Study, Princeton, NJ, USA // version 2: Dec 1992 Piet Hut -- adopted to the new C++-based starlab //+files: // mkplummer.C // //-files: //+desc: // Mkplummer builds a nbody system according to a Plummer model, in virial // units (M=G=-4E=1, with E the total energy), and finite spatial extent // which can be regulated by specifying mfrac or rfrac or using their default // values. // // litt: S.J. Aarseth, M. Henon and R. Wielen (1974), // Astron. and Astrophys. 37, p. 183. //-desc: /* *............................................................................. */ #include "dyn.h" #ifdef TOOLBOX #define MFRAC_DEFAULT 0.999 /* radial cutoff */ #define RFRAC_DEFAULT 22.8042468 /* corresponding radial cutoff */ /* (not used right now) */ #define SEED_STRING_LENGTH 60 //+note: // after sprinkling in particles according to a Plummer // distribution, the whole system is shifted in position // and velocity so as to put the center of mass at rest // at the coordinate center. //-note: //+bugs: // None. //-bugs: /* *----------------------------------------------------------------------------- */ local void mkplummer(dyn * b, int n, real mfrac, real rfrac) { int i; real partmass; /* equal mass of each particle */ real radius; /* absolute value of position vector */ real velocity; /* absolute value of velocity vector */ real theta, phi; /* direction angles of above vectors */ real x, y; /* for use in rejection technique */ real scalefactor; /* for converting between different units */ real inv_scalefactor; /* inverse scale factor */ real sqrt_scalefactor; /* sqare root of scale factor */ real mrfrac; /* m( rfrac ) */ real m_min, m_max; /* mass shell limits for quiet start */ dyn * bi; b->set_mass(1.0); partmass = 1.0 / ((real) n); //+desc: // Calculating the coordinates is easiest in STRUCTURAL units; // conversion to VIRIAL units will be performed below. // // Recipe for scaling to the proper system of units: // // Since G = M = 1, if we switch from a coordinate system with // length unit r_old to a coordinate system with length unit r_new , // the length units simply scale by a factor C = r_new / r_old . // Consequently, the coordinate values of physical quantities // such as positions should transform inversely to maintain the same // coordinate-invariant meaning. Similarly, the square of the velocities // should transform inversely proportional to the positions, // since GM = 1 (cf. a relation such as v*v = G*M/r ). //
// To summarize: If // r_unit(new) = C * r_unit(old) , // then // pos(new) = (1/C) * pos(old) // and // vel(new) = sqrt(C) * vel(old) . ////-desc: scalefactor = 16.0 / (3.0 * PI); inv_scalefactor = 1.0 / scalefactor; sqrt_scalefactor = sqrt( scalefactor ); /* * Now convert rfrac into an equivalent mfrac, if necessary: */ if (rfrac < VERY_LARGE_NUMBER) { // Note: the following powers can cause // problems on some compilers... rfrac *= scalefactor; // Convert from VIRIAL to STRUCTURAL units mrfrac = rfrac*rfrac*rfrac / pow(1.0 + rfrac*rfrac, 1.5); if (mrfrac < mfrac) mfrac = mrfrac; // mfrac = min(mfrac, m(rfrac)) } /* * now we construct the individual particles: */ for (i = 0, bi = b->get_oldest_daughter(); i < n; i++, bi = bi->get_younger_sister()) { bi->set_mass(partmass); //+desc: // the position coordinates are determined by inverting the cumulative // mass-radius relation, with the cumulative mass drawn randomly from // [0, mfrac]; cf. Aarseth et al. (1974), eq. (A2). //-desc: m_min = (i * mfrac)/n; m_max = ((i+1) * mfrac)/n; real rrrr = randinter(m_min,m_max); radius = 1.0 / sqrt( pow (rrrr, -2.0/3.0) - 1.0); theta = acos(randinter(-1.0, 1.0)); phi = randinter(0.0, TWO_PI); bi->set_pos(vector(radius * sin( theta ) * cos( phi ), radius * sin( theta ) * sin( phi ), radius * cos( theta ))); //+desc: // the velocity coordinates are determined using von Neumann's rejection // technique, cf. Aarseth et al. (1974), eq. (A4,5). // First we take initial values for x, the ratio of velocity and escape // velocity (q in Aarseth et al.), and y, as a trick to enter the body of the // while loop. //-desc: x = 0.0; y = 0.1; /* * Then we keep spinning the random number generator until we find a pair * of values (x,y), so that y < g(x) = x*x*pow( 1.0 - x*x, 3.5) . Whenever * an y-value lies above the g(x) curve, the (x,y) pair is discarded, and * a new pair is selected. The value 0.1 is chosen as a good upper limit for * g(x) in [0,1] : 0.1 > max g(x) = 0.092 for 0 < x < 1. */ while (y > x*x*pow( 1.0 - x*x, 3.5)) { x = randinter(0.0,1.0); y = randinter(0.0,0.1); } /* * If y < g(x), proceed to calculate the velocity components: */ velocity = x * sqrt(2.0) * pow( 1.0 + radius*radius, -0.25); theta = acos(randinter(-1.0, 1.0)); phi = randinter(0.0,TWO_PI); bi->set_vel(vector(velocity * sin( theta ) * cos( phi ), velocity * sin( theta ) * sin( phi ), velocity * cos( theta ))); } // Transform to center-of-mass coordinates, and scale to standard parameters, // assuming a softening parameter of zero. b->to_com(); if (n > 1) { real kinetic, potential; get_energies(b, 0.0, kinetic, potential); scale_virial(b, -0.5, kinetic, potential); scale_energy(b, -0.25, kinetic + potential); } } //usage: mkplummer -n # [options] //parameters: // By default input is read from standard input, output to standard output. // //option: -n# // where # is the number of bodies in the Nbody system. // There is no default, this is a required parameter. //option: -s # (seed) // where # stands for an integer either in the range // [1,2147483647], or # = 0 which causes a seed to be // chosen as the value of the UNIX clock in seconds; this // guarantees that no two calls will give the same value for // the seed if they are more than 2.0 seconds apart. //option: -m # // mass fraction of the (infinitely extended) Plummer model //option: -r # // radius fraction of the (infinitely extended) Plummer model // // If the mass fraction and radius fraction are both 1.0 then // particles will be sprinkled in all over space. If mfrac < 1.0 or // rfrac < 1.0 then each particle is constrained to lie within // both the radial and (cumulative) mass bound. // For example, if rfrac( mfrac ) > rfrac then rfrac is the // limiting factor, but if rfrac( mfrac ) < rfrac then mfrac limits // the extent of the Plummer realization. // //option: -i // //option: -o // //option: -c "..." // //- /* *----------------------------------------------------------------------------- */ main(int argc, char ** argv) { int i; int c; int n; int input_seed, actual_seed; real mfrac; real rfrac; bool c_flag = FALSE; bool n_flag = FALSE; bool s_flag = FALSE; bool m_flag = FALSE; bool r_flag = FALSE; bool i_flag = FALSE; bool o_flag = FALSE; char *comment; char seedlog[SEED_STRING_LENGTH]; extern char *poptarg; int pgetopt(int, char **, char *); if (argc == 1) { cerr <<"usage: mkplummer -n # [-s #] [-r #] [-m #] [-i] [-c \"..\"]\n"; exit(1); } mfrac = rfrac = VERY_LARGE_NUMBER; while ((c = pgetopt(argc, argv, "c:n:s:m:r:io")) != -1) switch(c) { case 'n': n_flag = TRUE; n = atoi(poptarg); break; case 's': s_flag = TRUE; input_seed = atoi(poptarg); break; case 'm': m_flag = TRUE; mfrac = atof(poptarg); break; case 'r': r_flag = TRUE; rfrac = atof(poptarg); break; case 'i': i_flag = TRUE; break; case 'o': o_flag = TRUE; break; case 'c': c_flag = TRUE; comment = poptarg; break; case '?': cerr << "usage: mkplummer " << "-n # [-s #] [-r #] [-m #] [-i] [-c \"..\"]\n"; exit(1); } if (n_flag == FALSE) { cerr << "mkplummer: please specify the number # of"; cerr << " particles with -n#\n"; exit(1); } //+todo: // this should be moved elsewhere, of course. Included here just to // get it to work quickly (Piet, 921210). //-todo: if (n < 1) { cerr << "mkplummer: n < 1 not allowed\n"; exit(1); } dyn *b, *by, *bo; b = new dyn(); bo = new dyn(); if (i_flag) bo->set_label(1); b->set_oldest_daughter(bo); bo->set_parent(b); for (i = 1; i < n; i++) { by = new dyn(); if (i_flag) by->set_label(i+1); by->set_parent(b); bo->set_younger_sister(by); by->set_elder_sister(bo); bo = by; } if (c_flag == TRUE) b->log_comment(comment); b->log_history(argc, argv); if (s_flag == FALSE) input_seed = 0; /* default */ actual_seed = srandinter(input_seed); if (o_flag) cerr << "mkplummer: random seed = " << actual_seed << endl; sprintf(seedlog, " random number generator seed = %d",actual_seed); b->log_comment(seedlog); if (m_flag == FALSE && r_flag == FALSE) mfrac = MFRAC_DEFAULT; /* default */ if (n != 0) mkplummer(b, n, mfrac, rfrac); // setup_starlab(); cout.precision(2); put_dyn(cout, *b); } #endif /* end of: mkplummer.C */