
BIMA J-MIRIAD

Create Date: 2003-09-23 Contact author: G. R. Harp 1

Bima Memo 98 &
ATA Memo 58

J-MIRIAD: Java Wrappers for MIRIAD Methods

G. R. Harp1, and M. C. H. Wright2

1. Allen Telescope Array, SETI Institute
2. Radio Astronomy Laboratory, UC Berkeley

2003-09-26

BIMA J-MIRIAD

Create Date: 2003-09-23 Contact author: G. R. Harp 2

Abstract ... 2
Introduction... 2
Architecture... 3
Implementation... 4
Demonstrations... 6
Conclusion .. 7
Appendix: Jython Script for Simple MIRIAD UV File.. 9

Abstract
A new set of Java wrappers for the MIRIAD input-output routines provides access to
MIRIAD data from Java and Jython (Jython is a dialect of Python). Originally developed
as part of the correlator for the Allen Telescope Array, these wrappers are general
purpose and are available for application in other software projects where Java or Python
is used. In this article we describe the architecture of these wrappers and demonstrate
their use with some examples.

Introduction
The radio-astronomical community is currently faced with the difficult challenge of
upgrading its data manipulation software. Powerful, public-domain analysis packages
(MIRIAD1, AIPS, GILDAS, etc.) developed over 20+ years in procedural languages such
as FORTRAN and C represent a valuable legacy. Yet new telescopes are controlled by
object-oriented software written in languages like Java or C++. The challenge is to bridge
the gap between the legacy code and new software systems.

One approach is to transliterate or rewrite the old packages using new techniques. This
approach has several disadvantages: It discards 20 years of productivity by some of the
best minds in the field, it is costly (in dollars or hours), the completion date may be far in
the future (especially if developed “ for free”), and it is followed by a long debugging
period since years may pass before users exercise every aspect of the code.

The alternative is to integrate the legacy software into our new systems. This also has
disadvantages: The legacy software must be maintained requiring developers skilled in
procedural languages, the compilation of the complete system is more complex, and it is
inherently inelegant. The last point should not be disregarded, as it represents a
motivational barrier for developers who take pride in their work.

We acknowledge that there is no correct choice, but a cost/benefit analysis adds
perspective. With so few software developers in our community, we must place high
value on their time. We believe this time better spent creating new functionality to
address modern astronomical problems rather than reproducing functionality that already
exists.

BIMA J-MIRIAD

Create Date: 2003-09-23 Contact author: G. R. Harp 3

In line with this, several groups are working to expose the capability of legacy software
to modern systems. In one such effort2,3 Python scripts allow invocation of MIRIAD
programs and GILDAS routines from the Python command line. The aim of these efforts
is to give Python control of the complete data processing chain at the ALMA millimeter
array under construction in Chile. On the MIRIAD side, this effort has focused on high
level MIRIAD programs rather than low-level subroutines. However, to generate fresh
MIRIAD data files from scratch, one requires low-level access. Recently, Pound4 has
developed Java wrappers for some low-level MIRIAD routines.

In a parallel effort we have developed Java wrappers for the I/O routines in MIRIAD.
These wrappers (dubbed J-MIRIAD) were developed for the Allen Telescope Array
(ATA) which is currently under development by the SETI Institute and the U. C.
Berkeley Radio Astronomy Laboratory5. J-MIRIAD allows the ATA control software,
written in Java, to write MIRIAD files using output from the ATA correlator. Presently J-
MIRIAD includes routines for reading and writing headers, history files, UV data and
image data. In this memo we describe the architecture of J-MIRIAD and demonstrate its
application.

A side benefit of J-MIRIAD is that it exposes MIRIAD I/O to Python automatically, if
one uses Jython. Jython is a “super-dialect” of Python; it is compatible with ordinary
Python but also gives access to Java classes and methods from the command line. We
demonstrate this behavior with an example.

Architecture
While choosing a design for J-MIRIAD, we decided to maintain a 1:1 correspondence
between J-MIRIAD routines and MIRIAD routines. This shortens the learning curve for
users already familiar with MIRIAD, and simplifies transliteration from FORTRAN to
Java.

We reap some of the benefits of our object-oriented language by putting methods into
classes that keep track of values maintained between method invocations. For example,
most MIRIAD I/O routines take an integer argument that identifies the MIRIAD file. We
hide this argument from the J-MIRIAD user by storing it in a private variable. This
simplifies the interface and additionally allows error detection and prevention (e.g. file
not open, invalid file number, etc.).

In a more detailed example consider the call for opening a MIRIAD image dataset in C:

/ * C ver s i on * /
voi d xyopen_c(i nt * t handl e, Const char * name, Const char * st at us,
i nt naxi s, i nt * axes) { …}

In J-MIRIAD, this is replaced by two methods (one of a few exceptions to the 1:1
correspondence rule):

/ * Java ver s i on * /

BIMA J-MIRIAD

Create Date: 2003-09-23 Contact author: G. R. Harp 4

publ i c voi d xyopen(St r i ng name, i nt [] axes) t hr ows I OExcept i on{ …}
publ i c i nt [] xyopen(St r i ng name) t hr ows I OExcept i on{ …}

Taking each parameter in turn, notice that the C-parameter t handl e disappears because
it is transformed to a private field of the XYIO class (see below). The name parameter is
preserved, but the st at us parameter disappears. In C, st at us is “ol d” or “new” , but
in J-MIRIAD this is implied by which version of xyopen that is called. Since “new”
files require that you specify the axes , one version takes an axes parameter and creates
a new file. Instead “ol d” files obtain axes from the file itself, and this is returned from
the version that opens an old file. Finally, since Java arrays know their own length, there
is no need to specify naxi s as in C.

From the Java perspective, J-MIRIAD consists primarily of 3 classes (fig. 1): An abstract
superclass, MirIO, which contains header and history I/O, and two concrete classes
UVIO and XYIO for reading/writing uv data or image data, respectively. UVIO and
XYIO each derive from MirIO and so incorporate its functionality.

Figure 1: J-MIRIAD class inheritance.

Implementation
Now we come to the “ inelegant” part of J-MIRIAD, where the Java methods interface
with C. We use the Java Native Interface (JNI) technology which is built in to Java.
Inside of our Java classes we declare “native” methods, e.g.

/ * Java nat i ve met hod decl ar at i on * /
pr i vat e nat i ve i nt xyopen(byt e[] name, byt e[] how, i nt [] axes) ;

MirIO (abstract)
Header Methods
History Methods

private int FileNumber

UVIO

UV Methods

XYIO

Image Methods

private int[] Axes

BIMA J-MIRIAD

Create Date: 2003-09-23 Contact author: G. R. Harp 5

Sun provides a utility “ javah” which takes the compiled XYIO class and generates a
header file from it. Inside this header file is a C-style declaration for each native method,
in this case

JNI EXPORT j i nt JNI CALL Java_XYI O_xyopen

(JNI Env * , j obj ect , j byt eAr r ay, j byt eAr r ay, j i nt Ar r ay) ;

To complete the connection between Java and MIRIAD, we must provide an
implementation of this function. This is tedious but straightforward. The only twist is that
we must be aware that the Java Virtual Machine (JVM) automatically calls mal l oc for
array type arguments. Following best-practice, our implementation wraps each array in a
“smart pointer” (Saf eJXAr r ay) at the beginning of the function, e.g.

JNI EXPORT j i nt JNI CALL Java_XYI O_xyopen

(JNI Env * env, j obj ect obj , j byt eAr r ay f i l ename,
j byt eAr r ay how, j i nt Ar r ay axes)

{
 Saf eJBAr r ay saf e_f i l ename (env, f i l ename) ;
 Saf eJBAr r ay saf e_how (env, how) ;
 Saf eJI Ar r ay saf e_axes (env, axes) ;
 i nt f i l enum;
 xyopen_c(&f i l enum,

char *) saf e_f i l ename. Get () ,
(char *) saf e_how. Get () ,

 saf e_axes. Lengt h() , saf e_axes. Get ()) ;
 r et ur n f i l enum;
}

The Saf eJXAr r ay types are a set of classes we wrote for wrapping JNI arrays. They
make sure that the JNI arrays are f r ee’ed when they go out of scope and expose the
underlying C-arrays through the Get () and Lengt h() functions.

Once the C++ code is written, it is compiled into a shared object library (l i bj mi r . so)
and made available to the JVM at run time. The compiled MIRIAD C-routines must be
similarly made available. Initially we sought to use the shared object libraries produced
by the standard MIRIAD distribution. However, this was inconvenient due to co-
dependencies between libraries. We hope to work with the MIRIAD development team to
find a simpler library structure, but for the time being we simply compiled the necessary
MIRIAD files directly into l i bj mi r . so .

One outstanding issue with J-MIRIAD deserves mention. The original MIRIAD code was
developed prior to widespread adoption of “Exception” technology for error handling.
Hence when MIRIAD encounters a “ fatal” error, the program simply aborts. Again, we
hope to work with the MIRIAD development team to insert a mechanism for generating
exceptions instead.

BIMA J-MIRIAD

Create Date: 2003-09-23 Contact author: G. R. Harp 6

Demonstrations
The main scripting language chosen for ATA control is Jython, a dialect of Python.
Jython has the power to import Java classes analogously to Python scripts. Since the
ATA control system is written in Java, Jython gives us powerful control of the ATA from
the Jython command line without writing any Python wrappers. This property is
beneficial to users of the scripting interface, since they use exactly the same interface as
program developers and only one set of interfaces need be maintained.

Jython is also a powerful development tool. As you develop any new piece of Java code,
Jython can be used to exercise the code as you write it. This approach was used in
development of J-MIRIAD. The appendix shows a by product of J-MIRIAD
development, a Jython script to write a simple MIRIAD UV file (of a point source). This
file now serves as an example for Python users who wish to manipulate MIRIAD data at
the ATA.

For sophisticated operations, it makes sense to use Java rather than Python. After all,
Python does not offer many of the benefits of modern methods (e.g. strong typing, data
hiding, etc.) for which we wrote the wrappers in the first place. To more fully
demonstrate J-MIRIAD’s capabilities, we have written two Java programs
“UVFromImage” and “XYFromImage.” Each program takes a graphics file as input
(* .gif, * .jpg, etc.) and generates a MIRAID file (UV or Image, respectively) from it.

Figure 2 is an image generated from UVFromImage. Here 350 antennas (61,000
baselines) were assumed using positions from the proposed complete ATA. The full
width of the image corresponds to the primary FOV of the ATA antennas, assumes a sky
frequency of 1420 MHz, and simulates an 8 hour observation. The source structure is
obviously artificial, but highlights the unique combination of FOV and resolution that
will be available from a single ATA observation.

BIMA J-MIRIAD

Create Date: 2003-09-23 Contact author: G. R. Harp 7

Figure 2: “Dirty” image from a UV file generated by J-MIRIAD. Four channels are
displayed out of 1024 frequency channels produced by the ATA correlator over 100 MHz
BW and centered at 1421 MHz. The full width of each image corresponds to the FWHM

of the ATA antenna primary beam.

Conclusion
J-MIRIAD provides access to a subset of MIRIAD C routines. This subset fulfills the
baseline needs of the ATA correlator, since they permit generation of MIRIAD UV files
(as output from correlator) and MIRIAD Image files (as output from preliminary data
analysis). In addition, both Java and Jython provide methods to invoke self-contained
MIRIAD programs at the operating system level (e.g. well developed imaging, self-
calibration and deconvolution programs such as INVERT, SELFCAL and MOSMEM).
Thus J-MIRIAD already allows the creation of sophisticated data analysis programs that
leverage the power of MIRIAD.6

BIMA J-MIRIAD

Create Date: 2003-09-23 Contact author: G. R. Harp 8

Here we have justified our choice, mentioned in the introduction, to re-use legacy code
rather than re-implement it with new techniques. With only a few man-weeks of effort,
we have brought a substantial fraction of MIRIAD’s capabilities into the 21st century.

We hope that these efforts will stimulate similar activity in other software development
groups. To this end, we will make J-MIRIAD source code available to interested parties
(please contact authors). Although J-MIRIAD was developed in the context of the ATA
control system, it would be straightforward to convert it to a stand-alone product. If other
groups desire to adopt this code, we would be interested in cooperatively developing a
generic version of J-MIRIAD.

BIMA J-MIRIAD

Create Date: 2003-09-23 Contact author: G. R. Harp 9

Appendix: Jython Script for Simple MIRIAD UV File

f r om j ava. l ang i mpor t *
f r om at a. mi r i ad i mpor t *
f r om at a. ut i l i mpor t *
f r om at a. mat h i mpor t *

def uvgen(out f i l e) :
 i o = UVI O()
 i o. uvopen(out f i l e, " new")
 i o. hi sopen(" wr i t e")
 i o. uvset (" pr eambl e" , " uvw/ t i me/ basel i ne" , 0, 0. 0, 0. 0, 0. 0)
 i o. uvset (" dat a" , " wi de" , 0, 1. 0, 1. 0, 1. 0)
 i o. hi swr i t e(" Jyt hon: Mi r i ad")
 i o. wr hda(" obst ype" , " cr osscor r el at i on")
 i o. uvput vr a(" sour ce" , out f i l e)
 i o. uvput vr a(" oper at or " , " Jyt hon")

 sr a = 0. 0
 i o. uvput vr d(" r a" , sr a)
 i o. uvput vr d(" obsr a" , sr a)
 sdec = 30. 0/ 180. 0* Mat h. PI
 cosdec = Mat h. cos(sdec)
 s i ndec = Mat h. s i n(sdec)
 i o. uvput vr d(" dec" , sdec)
 i o. uvput vr d(" obsdec" , sdec)
 i o. uvput vr d(" l o1" , 1. 421 - . 19 - 0. 01)
 i o. uvput vr d(" l o2" , 0. 19)
 i o. uvput vr d(" f r eq" , 1. 421)
 i o. uvput vr d(" f r eqi f " , 0. 01)
 i o. uvput vr r (" pbf whm" , 8000. 0)
 i o. uvput vr r (" i nt t i me" , 600. 0)

 now = 1062904006792000000L
 t i meout = 2452889. 6293378705
 l s t _r ad = 0. 5646596920389076
 t wopi = Mat h. PI * 2. 0
 al ong = sr a - l s t _r ad
 al at = Const ant . HC_l at / 180. 0 * Mat h. PI
 cosl at = Mat h. cos(al at) ;
 s i nl at = Mat h. s i n(al at) ;
 i o. uvput vr d(" l at i t ud" , al at)

i o. uvput vr d(" l ongi t u" , al ong)
 t el escop = " hat cr eek"
 mount = UVI O. ALTAZ
 evect or = 0
 evect or = 0. 0
 i o. uvput vr i (" mount " , mount)
 i o. uvput vr r (" evect or " , evect or)
 i o. uvput vr a(" t el escop" , t el escop)

 i o. uvput vr r (" j yper k" , 150. 0)
 i o. uvput vr r (" vsour ce" , 0. 0)
 i o. uvput vr r (" vel dop" , 0. 0)
 i o. uvput vr r (" epoch" , 2000. 0)

BIMA J-MIRIAD

Create Date: 2003-09-23 Contact author: G. R. Harp 10

 nant = 3
 i o. uvput vr i (" nant s" , nant)
 i o. uvput vr i (" nt emp" , 0)

 i o. uvput vr i (" npol " , 1)
 i o. wr hdi (" npol " , 1)
 i o. uvput vr i (" pol " , UVI O. Pol XX)
 i o. uvput vr i (" nwi de" , 1)
 i o. uvput vr r (" wf r eq" , 1. 421)
 i o. uvput vr r (" wwi dt h" , 0. 02)
 i o. uvput vr r (" wsyst emp" , 300. 0)
 t power = [400. 0, 400. 0, 400. 0]
 i o. uvput vr i (" nt power " , nant)
 i o. uvput vr r (" t power " , t power)

 ant pos = [0. 0, 0. 0, 0. 0, 0. 0, 100. 0, 0. 0, - 100* Mat h. s i n(al at) , 0. 0,
 100. 0* Mat h. cos(al at)]
 i o. uvput vr d(" ant pos" , ant pos)

 ha = 1. 0
 l s t = ha * Mat h. PI / 12. 0 + sr a
 i o. uvput vr d(" ut " , l s t)
 i o. uvput vr d(" l s t " , l s t)
 s i nha = Mat h. s i n(l s t)
 cosha = Mat h. cos(l st)
 s i nq = cosl at * s i nha
 cosq = s i nl at * cosdec - cosl at * s i ndec * cosha
 psi = Mat h. at an2(si nq, cosq) + evect or
 i o. uvput vr r (" chi " , psi)

 n=1
 whi l e (n < nant) :
 m = 0
 whi l e (m < n) :
 bxx = ant pos[3* n] - ant pos[3* m]

 byy = ant pos[3* n+1] - ant pos[3* m+1]
 bzz = ant pos[3* n+2] - ant pos[3* m+2]
 bxy = bxx * s i nha + byy * cosha
 byx =- bxx * cosha + byy * s i nha
 p0 = bxy
 p1 = byx * s i ndec + bzz * cosdec
 p2 = - byx * cosdec + bzz * s i ndec
 p3 = t i meout + 365. 25 / 366. 25 * ha / 24. 0
 p4 = UVI O. ant bas(m, n)
 pr eambl e = [p0, p1, p2, p3, p4]
 wcor r = [Compl exF(1. 0, 0. 0)]
 wf l ags = [1]
 wvi z = Vi s i bi l i t y(pr eambl e, wcor r , wf l ags)
 i o. uvwr i t e(wvi z)
 m=m+1
 n=n+1

 i o. hi sc l ose()
 i o. uvcl ose()
 r et ur n

BIMA J-MIRIAD

Create Date: 2003-09-23 Contact author: G. R. Harp 11

References

1 Sault, R. J., Teuben, P. J., and Wright, M. C. H., 1995, in Astronomical Data Analysis
Software and Systems IV, ed. R. Shaw, H. E. Payne, and J. J. E. Hayes, ASP Conf. Ser.,
77, 433.
2 Pety, J., Gueth, F., Guilloteau, S. Teuben, P., Wright, M., et al., to be presented at
ADASS, 2003.
3 Pety, J., Cosson, F., Gueth, F., Guilloteau, S., Lucas, R., Teuben, P., and Wright, M.,
ALMA memo 465: “Case for interoperability as an ALMA off-line model.”
4 Pound, M., unpublished.
5 DeBoer, D.R., Dreher, J.W., ATA memo 23: “A System Level Description of the
ATA.”
6 This is made possible partly because MIRIAD was well designed at the outset. MIRIAD
consists of relatively small, self-contained programs that can be invoked in any sequence.
If MIRIAD were designed as an integrated system, the present efforts at code re-use
would be complicated.

