
Chapter 1

MIS (Miriad Interferometry
Singledish) Toolkit

MIS (Miriad Interferometry Singledish) is a toolkit to help you reducing mosaiced CARMA-23 single
dish and interferometric data, and combine them. This particular manual was written with the (Spring
2011) NGC 1333 project (cx323) in mind, but is also being used for the CARMA’s CLASSy key project
(c0924)(Spring/Summer 2012) and followups (c1186, Fall 2013) 1

To give you an idea of the multiplicity and complexity of this kind of project for CARMA, consider the
following Drake-like formula for these data:

NCLOUD ∗ NMOL ∗ NCH ∗ NAC ∗ NTR ∗ NP ∗ NAB

where, in the example of N1333:

NCLOUD Number of clouds (5: SVS13 (n1333), B1S, L1451, SERPM, SERPS)

NMOL Number of molecules (3: HCN, 88.631847 GHz, N2H
+, 93.173505 GHz, and HCO+, 89.188518 GHz,

plus an additional continuum band).

NCH Number of channels (159 for line, 47 for continuum)

NAC Number of array configurations (2: E and D)

NTR Number of trials (10-20)

NP Number of pointings (527), 30 arcsec grid spacing in an 8´ by 11´ region for SVS13. Similar for
others.

NAB Number of antennas (23) or baselines (253), depending on data reduction

where first the single dish data with NAB=23 has to be reduced, followed by NAB=253 interferometric
baselines. In the end, after combining the single dish and interferometry data, we will wind up with
NMOL (3) cubes of NCH (159) channels each, and with probably around 512 x 512 spatial pixels. In
addition, there will also be a single continuum map of the same region. In the particular case of N1333
this resulted in 23 datasets, taking up about 16 GB of raw MIRIAD data.

It is obvious that some added infrastructure on top of the usual plain vanilla MIRIAD package would be
useful to organize the datareduction. Particularly to make it easy to (re-)reduce each project (“track”)
with slightly different parameters, forcing us to keep all scripts identical. For this we have assembled a very

1Draft version January, 2014

1-2 CHAPTER 1. MIS (MIRIAD INTERFEROMETRY SINGLEDISH) TOOLKIT

small scripting layer, which we call MIS, with added pipeline capabilities as well as storing and maintain-
ing a global parameter database that can be shared by all project members. The MIS package is currently
maintained via CVS. Details on our project page http://carma.astro.umd.edu/wiki/index.php/NGC1333

1.1 outline

A single observing script that performs single dish and interferometric observations of a large mosaic field
was used. The two types of data were independantly calibrated and processed to maps, after which a
joint deconvolution was performed to create final maps.

1.1.1 Single Dish (SD)

The reduction of SD data is somewhat unusual. First of all, we have 3 different types of dishes, each
with roughly the same, but a different size of their primary beam. But as we shall see, each dish has a
different response (modeled by a simple linear scaling) to the sky signal.

We used a position switching technique to a piece of the sky (about XX arcmin to the east of SVS13)
where no signal was known. This only works for the molecular line windows, not the continuum:

T =
ON −OFF

OFF
Tsys

The miriad task sinbad does this step.

Next a linear baseline was removed. One has to be careful with outflows, which in certain positions can
occupy a significant part of the window. The miriad task sinpoly does this step.

Finally, the pointings are interpolated into a single map (cube really). The miriad task varmaps does
this.

1.1.2 Interferometry (UV)

The calibration of the UV data follows the standard procedure. A passband source is observed first
(usually 3C84, sometimes Uranus to bootstrap the always present 3C84). In our case, 3C84 was also used
as phase/gain calibrator, because of its close proximity (10 degrees) from the source.

1.1.3 some more SD notes

You need a clean, emission-free OFF position as close to your source as possible, less than half a degree if
possible. Create a separate source in your catalog for this position. Make sure you set ’doppler’ in your
script to your main source.

You need to integrate on the OFF about every 2 minutes. To do this set up the sources and mosaic
sections of your script to visit the OFF at this interval and to change the ”pointStatus” value depending
on the source. Below is the section from the NGC1333 script. N1333OFF is the OFF position and SVS13.
We did each position for 15 seconds and switched to the calibrator every 8 cycles.

We have developed new scripts and miriad tasks (and upgraded old ones) to reduce the data. See
http://carma.astro.umd.edu/wiki/index.php/NGC1333 Some of the scripts are still N1333 specific (e.g.
they assume our correlator setup), so examine them closely.

CAVEATS:

1.1. OUTLINE 1-3

We found that doing singledish in this way increases the observing overhead to 50-60%. This affects not
only your rms sensitivity but your UV coverage. We had a very large mosaic so updated our mosaic
starting position every day to move the uv coverage around.

Flagging is very important. Make sure you flag the autocorrelation data where you flag the crosscorrela-
tion data (do uvflag script does this).

Note we did NGC1333 in CARMA-23 mode, so got some of the short spacings from the 3.5m for overlap
with the 10-m autocorrs. If you are doing CARMA15, the joint deconvolution may not work as well.

Chapter 2

MIS Pipeline

ABSTRACT

We describe a simple yet flexible and effective pipeliner for Unix commands. It uses a Makefile (behind
the scenes) to define a serial set of commands for your choice of the pipeline. The pipeline commands
share a common set of parameters by which they communicate. Pipeline parameters can optionally be
made persistent accross multiple runs of the pipeline. Commands must follow a simple convention to
retrieve and store parameters.

2.1 Introduction

To process a large number of datasets in a very similar way is a common theme, particularly for the type
of N1333 data we are discussing here. We thus developed a simple infrastructure to assemble and run
a pipeline comprising of a set of commands that have to be run in a certain order, and depend on each
other. We call this package MIS, which was derived from ’drpacs’1.

Technically mis consists a set of shell and python scripts and the infrastructure to setup a serial pipeline,
and some aspects of running this pipeline in parallel as well.

Although mis was written for a large set of N1333 data, you can use it and construct your very own
pipeline. An example is given later in this manual.

A summary of typical MIS pipeline commands is:

pipeline $MIS/cat/pipeline.001 > Pipefile # generate control Pipefile

pipepar -c project=c0184.3B_108PG2130.13 carmaRefant=2 # set some parameters

pipe all # run the pipe

2.2 Pipeline

Lets assume we have 4 programs (or scripts) called step1, step2, step3 and step4 that need to be
run in succession in each project directory. Each of the stepX commands accepts its own unique set
of keyword=value command line arguments, but the pipeline convention is that the values for each of
these keywords are remembered for any subsequent run if you do not specify them explicitly. So if you
would manually first run a command as “step2 foo=bar”, the next time you would run just “step2”, it

1Dalton and Roger were its first users for a PACS project, and helped developing it

2.2. PIPELINE 2-5

will have remembered the value bar for foo. Users of the MIRIAD shell program will recall this type of
global parameter behavior. This can be very convenient, but can also bite you when you least expect it.

With the “pipeline” command you establish which commands, and in which order, need to be executed
for your pipe. This will produce a Unix-style Makefile, which by convention we call a Pipefile:

% pipeline 4 step1 step2 step3 step4 > Pipefile

Of course these four commands2 must exist in your Unix $PATH and most follow the pipeline parameter
convention (see below).

Unless for some bizarre reason you do not use pipeline parameters, a dummy parameter file needs to be
created before you can run the pipeline:

% pipepar -c

Apart from manually running each command, the “pipe” command will now run these 4 steps in succes-
sion:

% pipe

Checking ./Pipefile

Doing step1 as step1

Doing step2 as step2

Doing step3 as step3

Doing step4 as step4

This command uses the Unix “make” command, and uses the Pipefile as the controllng Makefile with
all dependancies properly defined. If for some reason step2 fails, the pipe will be aborted at that stage.
If you try and re-run the pipe after it had been successfully finished, you will probably see something like
the following:

% pipe

Checking ./Pipefile

make: Nothing to be done for ‘all’.

Technically, it uses Unix dot files for its dependancies. These dot files should not be touched or removed,
unless you know what you are doing. They make sure commands are not run again if not needed because
nothing was changed.

Here are some simple examples of running and re-running portions of the pipeline

pipe all does all steps in the pipeline (if needed)

pipe step2 run just step2 (if even ran ok before)

pipe all now will do step3 and step4

pipe step3 all does step3 and step4

pipe clean wipes the pipeline control files (the dot files)

As was hinted to before, a utility is needed to manage the global pipe parameter file. This is the file
that contains the parameters that are passed between the programs and scripts in the pipeline. This file
is a very simple ascii file with a set of “par=val” pairs, one per line. No spaces should be used before
the parameter, or surrounding the ’=’ sign. You can actually use any text editor to modify this file. No
quotes are needed as everything is interpreted as text. CHECK THIS FOR VALUES WITH SPACES

Here is the usage line for the pipepar command

2Although we gave the command simple stepX names, you can name these any way you like, e.g. pipeline 2 foo bar

is legal

2-6 CHAPTER 2. MIS PIPELINE

pipepar [-1|2] [-h] [-c] [-l] [-f parfile_name] [-s shell] [-p fmt] [-d par] [-v par] [-e par] [-z par] [-a] [par=val ...]

-h help

-1 Use single quotes (default)

-2 Use double quotes

-c create empty mis.def (parfile_name)

-l use spaces when printing out (-v) comma separated keyword values

-f file use another parfile_name from the default mis.def (not recommended)

-s shell output for given shell (csh and bash are currently known)

-p fmt C-style format (e.g. %10.2f) used in printing (-v) values

-v par show value of a parameter (multiple allowed, but do not combine with -e flag)

-d par delete a parameter

-e par print 1 or 0 if a parameter exists (only only occurence allowed now)

-z par sort a multi valued (comma separate) value

-a append a value (in a comma separated way) to the existing value(s)

par=val assign (new) value to a parameter (multiple allowed, -a will append)

2.3 Some Examples

1. rerun the complete pipeline (from step1 onwards) with a new parameter

pipepar foo=1.3

pipe step1 all

2. rerun the pipeline with a new parameter, but only run the pipeline from step3 onwards. This also
implies you better make sure that foo is not needed in step1 and step2. The current pipeline has
no dependancy for this yet.

pipepar foo=2.3

pipe step3 all

3. Rerun piece of the pipeline in each of a set of directories. In cumbersome csh notation this could
be achieved as follows:

foreach dir (‘cat dirs.txt‘)

cd $dir

pipepar foo=3.3

pipe step3 all

cd ..

end

and because this is somewhat cumbersome to type, a special command is available to help running
(pipeline) commands in a set of directories:

piperun dirs.txt ’pipepar foo=3.3 ; pipe step3 all’

does the same thing

4. From a set of directories, create a scatterplot of two pipeline derived parameters. Again, with the
aid of the piperun command this can be done as follows

piperun dirs.txt pipepar -v foo -v bar > foo_bar.tab

tabplot foo_bar.tab

5. Run a (pipe) command on a set of project directories in parallel. Generally you will need to
understand if your pipeline contains I/O and if running them in parallel is an efficient usage of your
resources. And of course the number of processes you can run them under. Here is an example of
running a set of pipelines on 4 processors, from step2 and onwards:

2.3. SOME EXAMPLES 2-7

piperun -n 4 dirs.txt pipe step2 all

6. Re-create a new pipeline using an extra step, and rerun the whole pipeline

pipeline $MIS/cat/pipeline.002 > Pipefile

pipe clean all

You generally will need to use an extra clean step, in order to clean up the old “dot” control files,
since the steps are unlikely to be compatible with the old pipeline (the only exception being if the
new pipeline appends steps to the old one).

7. Run the MIS pipeline in parallel on a 4-way processor on a set of project directories, and store the
output in pipe.log (in each project directory):

piperun -n 4 -c -o pipe.log dirs.txt ’pipepar -c project=%s showPlots=False; pipe clean all’

Note the use of the special “%s” construct to replace it with the active directory name from the
dirs.txt file as it loops over the project directories. Here is the full usage line for the piperun

command:

Usage: piperun [-n #procs] [-o logfile] [-c] [-v] [-w] dirs.txt cmd [args]

-h this help

-n #procs parallel processing using #procs processors

-o logfile output log

-c create directories

-v verbose (debug)

-w wait for RETURN after each project

dirs.txt text file with directory names

cmd unix command to run

args arguments to unix command (inlcuding ; cmd2 args2...)

8. Re-Run the MIS pipeline for failed projects

% piperun -v -o pipe1.log dirs.txt ’pipepar showPlots=False; pipe all’

CAVEAT: There appears to be a Unix issue aborting this command with the usual Ĉ, it will instead
work on the next project directory. A better way to halt the series, is to issue Ẑ, which suspends
the task, and then issue “kill %%” the currently last suspended task.

9. Re-Run a project with some additional flagging :

% echo ’ant(2)’ > CARMA.uvflag

% echo ’ant(21)’ > SZA.uvflag

% pipe reduction all

Flagging is acted upon in the reduction step, but only if files CARMA.uvflag and/or SZA.uvflag
are present, they are created with an editor, or in this case with a simple echo command, and the
pipeline is run again.

If you want to store these uvflag files in a more persisent way, use the advanced feature of storing
them as pipefiles (see “Advanced Usage” below) together with mis.def do the following

% pipepar pipefile=CARMA.uvflag,SZA.uvflag

% pipesave

2-8 CHAPTER 2. MIS PIPELINE

2.4 Pipeline Parameter Convention

Any script or program that is part of the pipeline must follow the same convention of retrieving named
parameters from the commandline, and override any previously stored values in the (default: mis.def)
pipeline parameter file. At the (successfull) end of the script new and changed parameters will be written
back to this parameter file for the next program in the pipe to pick up these variables.

In short, these are the conventions:

1. arguments to a pipeline tasks should be a unique series of “par=val” (since parameters can be
shared between pipeline tasks)

2. values are stored as a string, assigning a type (integer, real, boolean etc.) are left open to the task

3. each task should define a default value for each parameter

4. the task should then read the global database (usually from the mis.def file)

5. task can now compute

6. task should write out all parameter back to the global database

2.4.1 csh

Here is a very simple example in the csh scripting language how this can be accomplished:

#! /bin/csh -f

#

(1) define default values in case not given

set a=1

set b=2

(2) pipeline interface to grab old defaults

pipepar -s csh > tmp$$.par; source tmp$$.par; rm tmp$$.par

(3) poor man’s command line processor to override parameters

foreach _arg ($*)

set $_arg

end

(4) The Actual Code where the work can be done

echo A=$a B=$b

(5) write pipeline parameters back

pipepar a=$a b=$b c=3

The actual code is in (4), though (1) and (3) are fairly common techniques to make your shell script
more dynamic and have it accept parameters in a simple way. (2) and (5) are the new pipeline based
commands to ensure previous defaults are read before the commandline sets them (2), and ensure their
values are stored back into your local pipeline database (5).

2.4.2 python

Here is a very simple example in the python scripting language how this can be accomplished:

#! /bin/env python

2.5. ADVANCED USAGE 2-9

#

import parfile, sys

a=1

b=2

if __name__ == "__main__":

p = parfile.ParFile(’mis.def’)

p.argv(sys.argv)

p.set(’a’,a)

if p.has(’b’):

b = p.get(’b’)

else:

p.set(’b’,b)

p.set(’sum’,a+b)

p.save()

You can find full examples of this convention for bash, csh and python in the $MIS/templates/pipeline
directory. There are no examples in C or Fortran yet, but are relatively easy to implement and add to
your library.

2.5 Advanced Usage

Two wrapper scripts exist that help you managing your pipeline parameters in a persistent way. Imagine
your pipeline directory tree runs completely from scratch, so you would like to save and restore parameters
between different versions of the pipeline. We simply store the parameter files (mis.def) in an agreed upon
location, currently the project directory within the $MIS DEF (if present, or else the default $MIS/def)
directory), and retrieve them in a subsequent run. The commands pipesetup and pipesave are used for
this

pipesetup a=1 b=2 project=test

pipe all

pipesave

Another common technique to store large amounts of simulations is in a hierarchy where each level
identifies a new value in a parameter. mis supports this method as well, by storing the project directories
in that same hierarchy. In the example below you see three levels representing values for the 3 parameters
a, b and c:

mkdir par/0.4/0.1/6.0

pushd par/0.4/0.1/6.0

pipepar -c project=par/0.4/0.1/6.0 a=0.4 b=0.1 c=6.0

pipe all

pipesave

popd

...

mkdir test

cd test

pipesetup project=par/0.4/0.1/6.0

pipe all

In addition to the special identifying project parameter, the pipefile parameter is also treated some-
what special by the pipesetup and pipesave wrappers: they can contain a comma separated list of
filenames that will be retrieved and saved at the start and beginning of a pipeline, if you add these
wrappers to your pipeline. This would then enable your pipeline to use these files in a more persistent
way.

Example:

2-10 CHAPTER 2. MIS PIPELINE

pipepar pipefile=NOTES,uvflags

echo flagging ant 2 and 13, both had issues > NOTES

echo ’ant(2),time(10:00,11:00)’ > uvflags

echo ’ant(13),time(11:00,12:00)’ >> uvflags

pipesave

In the case that you need multiple calls to set a series of pipefile’s, the -a flag to pipepar is needed,
but to ease persistence, it is recommended you sort them using the -z flag before saving the files, viz.

pipepar -a pipefile=uvflag.mis

...

pipepar -a pipefile=NOTES

...

pipepar -z pipefile

pipesave

2.6 Building your own Pipeline

1. Define your pipeline commands, and for each command make sure they follow the pipeline parameter
convention. Place the commands somewhere in your $PATH.

2. Create the Pipefile, for example

pipeline 5 getdata calibrate map deconvolve summary > Pipefile

You can stick this Pipefile either in each project directory you want to run the pipeline on, or make
it a default by overwriting the example in $MIS/cat/Pipefile

3. Run the pipe, set parameters etc.etc.

pipepar -c foo=bar fum=bar

pipe all

4. If you want save/restore the pipeline parameters, the project parameter is the key for this:

pipepar project=mytest1

pipesave

the next time you setup a pipeline in another directory, the command

pipesetup project=mytest1

will restore your previous defaults.

2.7 MIS Pipeline Command Summary

Although the current $MIS/bin directory also contains many MIS specific commands, the following
commands are very general pipeline related, and all start with the 4 letters pipe:

pipeline create a Pipefile for running the ’pipe’ command

pipepar set and retrieve pipeline parameters

pipe run the pipeline

piperun run (optionally in parallel) pipeline in set of directories

pipesetup grab previously run pipeline parameters for a project

pipesave save pipeline parameters for a project

Chapter 3

Installation

Here we discuss the installation of MIS and comment on some related packages if you need them.

3.1 MIS

We use the same CVS repository as MIRIAD and NEMO, and the installation is very similar. The
module is called mis and once installed it will need MIRIAD, python + scipy/matplotlib and NEMO (at
least for the actual MIS pipeline, for your own pipeline you only need whatever your pipeline programs
need):1:

% cvs -d :pserver:anonymous@cvs.astro.umd.edu:/home/cvsroot co mis

% cd mis

% ./configure

% source mis_start.csh

From this point on you can put new scripts and python modules in the appropriate places (e.g. $MIS/bin
and $MIS/lib, or your own style somewhere in $PATH2

3.2 MIRIAD

For the actual MIS pipeline, you will need to have MIRIAD installed. See the appropriate MIRIAD
documentation.

A few reminders on updating MIRIAD programs. Lets take an example where one subroutine from the
library was updated (fitsio.for in this example) and the fits program (fits.for) was updated as well.

cd $MIR

cvs -nq update

cvs update

mirboss

mir.subs fitsio

mir.prog fits

but these steps assume you have write permission inside the MIRIAD tree. If you do not, and if it just
a program , for most programs there is an easy patch. Again, for the fits program you would do:

1In its most basic form the mis package does not need MIRIAD, NEMO or anything but the most basic pieces of python
2because pipeline commands are executed in another directory, scripts in the current directory will not work.

3-12 CHAPTER 3. INSTALLATION

cd $MIS

mkdir miriad

cp $MIRPROG/convert/fits.for .

cp $MIRPROG/convert/fits.h .

mirmake fits

mv fits $MISBIN

rehash

which fits

and now you see the MIS/bin version of the fitsio program, assuming your PATH was set with MIS before
MIR.

3.3 python

You will have to have python installed with at least scipy and matplotlib. You can test this the following
way, and see if you got any error messages about none existent modules:

% ipython -pylab

In [1]: import matplotlib

In [2]: import numpy

However, if you got an error message such as

ERROR: matplotlib could NOT be imported! Starting normal IPython.

or

ipython: Command not found.

you are in bad shape. For U of Maryland computers the command(s)

source /astromake/astromake_start

astroload python

will give you a version of (i)python with all the proper modules included, and even more. The script
to ease the installation into your own workspace is called python.install , and a copy should be in
$NEMO/src/scripts or $MIR/install.

3.4 NEMO

If you do not have NEMO installed, there is a simple way within MIRIAD to install NEMO:

% cd $MIR/borrow

% cvs -Q checkout nemo

% mirboss

% mir.install nemo

% source $MIR/borrow/nemo/nemo_start.csh

and to test a simple program that plots some garbage into a pgplot window, try this

% nemoinp 1:10 | tabhist -

If you have write permission, and need to install a new version of a task, this should do it:

% cd $NEMO

% cvs -nq update

% cvs update

% (cd src; make install)

% mknemo tabplot

Chapter 4

MIS

This Appendix describes some MIS specific aspects of the MIS pipeline.

4.1 MIS parameters

The global pipeline parameters are stored in ASCII format in a small text file, by default this is called
mis.def. For our MIS pipeline the following parameters listed in column 2 are defined by the programs
listed in column 1:

pipesetup project <optional step for re-running pipes with old mis.def files>

pipefile optional comma separated list of to-be-saved filenames

step most pipeline scripts store their last successful step name here

getdata rawdata where tar.gz or miriad/mir files live [/n/algol2/mpound/data/carma/CARMA23/rawdata]

project e.g. cx323.1E_89NGC133.20

ary e.g. E or D

trial e.g. 20

link normally 1, if symlinks used, use 0 if you want a local copy

scp if used, it will use scp with ’user@host’ style syntax

cvis derived from project or ary/trial (e.g. cx323.1E_89NGC133.20.miriad)

report - create form log files from listobs, uvlist, uvindex

do_uvflag flagfile generic flagger using uvflag and a flagfile

vis would override the default cvis

fixOff offname for single dish only, creates ’sddata’

do_reduceSD badants list of bad antennas (orthogonal to mis.uvflag file)

npoly order of polynomial for sinpoly

sleep normally unset, because it will prompt for next plot, use 0 in batch

device normally /xs for interactive work,use /null in batch

goto ieck, Start (default), Inspect, SinPoly, or Maps

map_inttime source for selected source, create xyt.tab files dra,ddec,inttime

see mk_map_inttime.csh for an example post-processing

do_uvcat1 uvcat to trim interferometry data to our 4 USB windows, creates ’uvdata’

do_inspect1 inspect your interferometry data

do_cal0 linecal optional calibrations (linecal, antpos)

4-14 CHAPTER 4. MIS

antpos

do_cal1 - standard gain and passband calibration

do_map0 - placeholder for now

pipesave - (any parameters in pipesetup also apply here)

4.1.1 Data products, Diagnostics

On top level:

caldir/ symbolic link to a location (could be itself) where cx* projects are

cx323.1<ary>_89NGC133.<trial> project name for given <ary> and <trial> (we have 22 accepted now)

flux.{tab,ps} flux of 3C84 from mfcal (i.e. before uranus fluxcal)

<ant>.{tab,ps} antenna based 3c84 gains from selfcal

combined.<mol>_<ary>_<ants> combined simple 4 channel cube

sd.<mol>.median.cube single dish cube

On project level:

def/ symbol link to $MIS/def/$project

SD/ antenna based SD data

mis.def all global MIS pipeline variables

mis.uvflag MIS uvflags for do_uvflag

MOL.median.cube for given molecule, median cube from all ants

MOL.resid.cube residual, but all 23 ants in here

xyt.tab pointing and integration times for this trial

On SD level:

MOL.ANT.cube cube for given MOL and ANT

MOL.ANT.cube.res

MOL.ANT.map sample map for given MOL and ANT

MOL.ANT.map.res

MOL.ANT.ps spectrum at 0,0 ?

rms.resid.ps RMS

4.1.2 Jy/K scaling

Jy/K ≈ 4108/D2, where D is given in m, is the scaling for a perfect radio telescope, independant of
observing frequency. For example, for a 10.2m OVRO dish this would be 38.0, for a 6.2m BIMA dish at
106.9 and the 3.5m SZA dish comes in at 335.3. Aperture efficiency will increase these values.

4.1.3 A benchmark case

A benchmark dataset is available seperately, and should be run to confirm the software works properly.

% cd $MIS

% wget ftp://ftp.astro.umd.edu:/pub/carma/misdata.tar.gz

% tar zxf misdata.tar.gz

% rm misdata.tar.gz

% mkdir tmp; cd tmp

% ../misdata/test-all

4.2. MIS EXAMPLE DATA INGESTION 4-15

4.2 MIS example data ingestion

In this Section we are show how a just newly observed project is entered to MIS. Usually an email come
in, which we refer to as the “endtrack” email, which contains two attachments: the scriptlog and the
observing file, e.g. c1186 1E 87Serpen.obs, for a given track, e.g. c1186.1E 87Serpen.SL.10. This is
entered to MIS, and lets say this is on computer A, given by the A% prompt:

A% mis_new c1186.1E_87Serpen.SL.10 ~/Downloads/scriptlog.txt ~/Downloads/c1186_1E_87Serpen.obs

we then move to the data reduction computer (B) and assuming the new dataset, c1186.1E 87Serpen.SL.10.miriad.tar.gz,
had been downloaded to the appropriate place, MIS can be updated :

B% mis -u

B% cd $MIS/data/CLASSy_reduction

B% set p=c1186.1E_87Serpen.SL.10

B% mkdir $p

B% cd $p

B% pipesetup project=$p

B% getdata

B% report

inspecting a section in the listobs.log file

--

Observed Sources Coordinates and Corr Freqs

Source Purpose RA Decl Vlsr Corfs in MHz

NOISE B 12 56 11.17 -5 47 21.52 8.00E+00 0.0

1751+096 B 17 51 32.82 9 39 00.73 8.00E+00 0.0

MWC349 F 20 32 45.53 40 39 36.63 8.00E+00 0.0

1743-038 G 17 43 58.86 -3 50 04.61 8.00E+00 0.0

SERPM S 18 29 49.66 1 14 55.81 8.00E+00 0.0

--

we can then assign the calibrators (in theory this step could be automated, see examples in the quality
script)

B% pipepar fcalname=MWC349 pcalname=1751+096 gcalname=1743-038 calname=1743-038 srcname=SERPM

B% cp $MIS/cat/mis.uvflag .

B% do_uvcat1

B% do_uvcat3

project size bmaj bmin bpa tint rmscal rmsres res/cal

c1186.1E_87Serpen.SL.10 10m 7.669 6.166 42.5 0.68 3.834E-03 1.86878E-03 0.4874230 1743-038

c1186.1E_87Serpen.SL.10 6m 30.136 13.585 -3.2 0.68 8.361E-03 6.30106E-03 0.7536252 1743-038

c1186.1E_87Serpen.SL.10 3.5m 30.734 20.250 6.2 0.68 1.903E-02 1.18977E-02 0.6252076 1743-038

B% do_uvcat2

B% do_uvcatSD

B% pipesave

B% (cd def; cvs add mis.def ; cvs ci -m new mis.def)

B% (cd def; cvs add mis.uvflag ; cvs ci -m new mis.uvflag)

and now the project has been ingested. The CVS repository now contains reasonable mis.def and a
default empty mis.uvflag file. Team members can now grab their version and fine tune the flagging.

4-16 CHAPTER 4. MIS

4.3 MIS ISSUES

4.3.1 WIKI

See also our N1333 wiki: http://carma.astro.umd.edu/wiki/index.php/NGC1333

BAD:

-once par has been set, hard to set another value

-one single pipeline.... but what if, as here, we have 2

-easy way to set a global def file to be read for each project?

4.4 OVERHEADS

For the 2011 data (N1333) we used a semi-optimized observing procedure, which still leaves rather large
overheads. Here are two examples for a typical 8 hour observing session in the N1333 project: (inttime
is the true on-source integration time, whereas winttime includes the wait until that source is on target,
so it includes slewing to that source.

inttime winttime %inttime %winttime

(hr) (hr)

w/SD, OFF position is 19 arcmin to the east cx323.1E_89NGC133.11

Total 7.490

3C84 0.467 0.719 0.062 0.096

N1333OFF 0.329 1.505 0.044 0.201

NOISE 0.008 0.900 0.001 0.120

SVS13 2.283 4.366 0.305 0.583

wo/SD cx323.1D_89NGC133.12

Total 8.434

3C84 0.729 1.142 0.086 0.135

NOISE 0.013 1.329 0.002 0.158

SVS13 3.725 5.963 0.442 0.707

It should be noted that a NOISE scan was often done before a SYSTEMP calculation, thus showing rather
large fractions (nearly 16 and 12% in the two cases) for winttime. None-the-less, on-source fractions for
the non-SD projects of 44% is not very impressive.

4.5. NOTES 4-17

4.5 NOTES

Here we gather some notes on the different objects we have mapped and are available for reduction in
MIS

4.5.1 Sources

The following sources have been part of the Perseus and Serpens molecular SERPM/c1186 18 29 49.66 1
14 55.81 8.0cloud surveys:

srcname/project RA DEC VLSR

SERPM/c0924 18 30 01.32 1 12 38.11 8.0

SERPM/c1186 18 29 49.66 1 14 55.81 8.0

SERPS/c1186 18 29 52.50 -1 56 36.48 8.0

SERPS/c0924 18 29 52.50 -1 56 36.47 8.0

SERPS/c1186 18 29 52.50 -1 56 36.47 8.0

SVS13/cx323 3 29 03.30 31 16 00.01 8.6

B1S/c0924 3 33 20.08 31 08 45.33 6.5

L1451/c0924 3 25 17.00 30 21 22.74 4.0 (aka B1E)

In c1186 new isotopics were introduced: H13CN, 86.34 GHz, HNC, 90.66356 GHz, and H13CO+, 86.34
GHz.

4.5.2 cx323: IRC10216

First test-object we observed. IRC 10216 is an evolved star, has been well studied before and has a range
of spatial frequencies that allowed us to test the larger N1333 survey. (HCN, 88.631847 GHz, HC3N,
90.978993 GHz(no detections), and HCO+, 89.188518 GHz, plus an additional 500 MHz continuum band).
There are 3 decent tracks in both E and D array. These also used different molecules from the ones we
used in subsequent observations (N1333 and others)

4.5.3 cx323: N1333

Observed spring 2011 in E and D array. 8 x 11 arcmin, 527 pointings. Last three tracks in D we deemed
we had enough Single Dish, and improved observing efficiency by removing the SD off-source scans. This
increased the on-science time from XX% to YY%.

E array: 13 tracks, of which 12 were run, and 10 had useful data.

D array: 22 tracks, of which 18 were run, and 13 had useful data.

As an example of archive access, all the N1333 data were refilled and downloaded in September 2012.
Refillling took about an hour, downloading UIUC to UMD at a typical rate of 10MB/sec. Filling speed
is about 1.6 MB/sec. The total disk space is 14.1 GB (compressed tar).

4.5.4 c0924: Serpens: SERPM and SERPS

One of the two cloud complexes for the c0924 key project, called CLASSy. Observed Spring 2012 - Winter
2012. For consortium sharing reasons the projects were labeled c0924, c0924I and c0924V in the CARMA
data archive.

4-18 CHAPTER 4. MIS

4.5.5 c0924: Perseus: B1S and L1451

One of the two cloud complexes for the c0924 key project, called CLASSy. Observed Spring 2012 - Winter
2012. For consortium sharing reasons the projects were labeled c0924, c0924I and c0924V in the CARMA
data archive.

4.5.6 c1186: Serpens: SERPM and SERPS

Observe 3 new molecules : H13CN, 86.34 GHz, HNC, 90.66356 GHz, and H13CO+, 86.34 GHzon a smaller
grid (20 pointings for both SERPM and SERPS)

4.6. CARMA AUTO-CORRELLATIONS: SINGLE DISH MAP MAKING 4-19

4.6 CARMA Auto-Correllations: Single Dish Map Making

This section describes some of the practical aspects of the data reduction of CARMA auto-correlation
(AC) data into a single dish map. A convenient way to visualize the AC’s is as a (real) matrix A(c, t),
where c denotes channel (159 in our case) and t denotes time1 See Figure 4.1. In a typical track of 6
hours we have close to 1000 integrations of 15 seconds each: the AC’s are typically organized in two
paired OFF integrations, followed by about 12-15 ON integrations (of course the cross-correlations are
taking place as well). Also note for each track we obtain many independant single dish maps, from each
antennae, although for the current analysis we only use the 6 more sensitive 10m dishes of the array.

-0.0086 -0.0051 -0.0016 0.0019 0.0054 0.0089 0.0124 0.0159 0.0194 0.0229 0.0264

Figure 4.1: Auto Correlation (AC) maps for the OFF positions (c0924I.1D 88B1S.1) of the HCO+

window 15 for Antenna 1. Horizontal are 159 channels, vertical are 166 times, between 20:56:29 and
02:56:27.0. Top left are the raw data, notice the slight jump of almost 15mU (or about 1.5% of autocor-
relation level) near the start of the observation. Top right panel shows the raw data where the average
of each column has been subtracted, showing longer term trends. In the bottom left differences between
two adjancent OFF rows are plotted, showing short term time variations. The bottom right panel shows
when the first OFF observation was used to normalize (diff?) and subtract all other observations. Also
notice the middle (“channel 80”) spike. Created with the do statsSD normalize=0 script.

We construct a single dish map (in K) using the usual

TA = Tsys(
ON

OFF
− 1)

Where the Jy/K scaling still needs to be applied.

We first note the following about these data:

• The AC’s are dimensionless and about unity. We simply refer to them as “U”, by lack of a better
term. Typical variations are just a few “mU”, but multiplying the differences between ON and
OFF by a sizeable system temperature (typically 300K) still results in 0.1K noise in TA. Most of

1MIS script do statsSD computes most of the images and numbers quoted in this section

4-20 CHAPTER 4. MIS

our signal is just a few K. After averaging 20 tracks, the final noise in the cubes winds up between
10 and 30 mK, but with some baseline issues in places.

• At certain moments in time, luckily always right before an OFF integration (if they occur), the AC’s
seem to get re-normalized a bit. This is typically 5-10%. There appears to be no correlation with
either window or antennae, but in a single observation, if they do happen, they happen at a given set
of discrete times, but not for all antennae/windows pairs, neither for all windows or antennas. This
prevents us from averaging and interpolating accross OFF positions, at least without normalization
(see below).

• Short term time variations of the (normalized) autocorrelations are very well behaved, do not
depend on either channel or time, and are about 0.879 mU (±0.002), measured from the “D” maps.
Since this measurement was done on “(even-odd)/2”, the actual variation on the autocorrellation
is

√
2 more, i.e. 1.243 mU (±0.003). Differencing measurements accross the ON’s (where the two

OFF’s are separated by about 3-4 minutes) the same answer.

• Raw data have short term RMS of about 0.94 mU (variance 0.09) normalized data have a smaller
RMS, 0.879 mU.

• Longer term time variations are more like 1.28 mU (±0.05), as judged on the “S” maps (such as
renormalized maps). With the

√
2 this is actually nearly identical what was measured in the “D”

maps (1.243). This suggests it is safe to box-car average a number of passbands to achieve a better
OFF division. If the OFF position would be known to high precision, the noise is only improved
by

√
2.

• A single OFF position was done after every 7 scans for SVS13 (N1333), each integration was 15
second. For all other regions (B1S, L1451, SERPM and SERPS), two OFF positions were done
after 9 scans. Also 15 seconds per integration. Stability suggest we may not even need two.

• system temperatures at CARMA are measured per spectral window, and are instantaneous.

• Using the OFF positions from blanksky data we can study the noise characteristics as function of
bandwidth. So far it looks like 1

√

BW
is only obeyed from 8 to 125 MHz, but the 250 and 500 MHz

bands seem to have an increased noise, a factor ≈ 2.

Here’s an outline how the data reduction takes place and some caveats and comments. There are 4 steps
to get to a final single dish map:

1 sinbad: Spectrum construction using ON and OFF. First the AC’s are normalized, to account for
the occasional slight jumps. This allows for a wider averaging of OFF’s, instead of just using the
last OFF. If just the last OFF was used, this is strictly not needed. However, by averaging OFF’s
we can reduce the channel to channel variations in the source data by up to

√
2.

2 sinpoly: Baseline subtraction. This is fairly straightforward. For each pointing a channel range
is defined where a first order polynomial is fitted to the background, and subtracted. The data is
now ready for gridding.

3 varmaps: Gridding. This is done by a weighted average using a gaussian convolution of all the
nearby (as defined by size=size1,size2) points. Optionally weighted using the systemp temperatures.

4a ORIMSR: Optionally we can use ORIMSR data to predict the scaling between antennae. Previ-
ously it had been determined that Jy/K ≈ 65 for the 10m dishes.

4b imstack: After varmaps has made (six) SD maps for each antenna, it turns out these maps are
not at the same scale. imcmp clearly shows that antennas can vary as much as 20%. imstack will
allow a set of cubes to be mean/median “averaged”, and a residual cube for each antennae from
this “averaged” cube be derived for inspection. Using C4 as reference antenna, the scaling factors
for the other antennas happen to be all larger than 1 and are: C1: 1.26 (0.03), C2: 1.48 (0.09), C3:
1.28 (0.08), C5: 1.51 (0.10), C6: 1.16 (0.05), with variances listed in parenthesis.

4.6. CARMA AUTO-CORRELLATIONS: SINGLE DISH MAP MAKING 4-21

4c smooth: For stability of the joint deconvolution, the single dish maps have a rather sharp edge as
seen by 6m and 3.5m dishes. The gridded map needs to be gently extended to roughly match the
expected dropoff of the signal from the smaller dishes. We achieve this by iteratively smoothing
this extended map, but continuesly replacing the inner well defined higher resolution maps at each
iteration. Thus one arrives at a hybrid resolution map where the resolution in the inner and outer
region is

E2
i = O2 +B2 + S2

and
E2

o = O2 +B2 + nS2

Some unresolved lower priority issues, some perhaps useful for future expansion:

• no rigorous flagging has been done, previously we use the interferometric flags in mis.uvflag, but
now we enforce mis.sdflag. Most are empty. There’s some indication some scan-based striping
can occur from times when the systemp temps were not behaving. However, they tend to average
out over many tracks.

• In plots comparing the pixel-by-pixel flux (imcmp in1= in2=), at the high end it seems that not
all tracks were equally well calibrated. 2-4% variations are visible.

• The code in imstack that compute the scaling factor(s) via a mean OLS does not report a formal
error. With the previous point it would be good to understand the magnitudes of both effects.

• no good comparison done between the simple sinbad approach, and the more sophisticated oaver=8,8
normalize=true repair=80,239,398 version.

• proper softened edges out of varmaps, these are still far from ideal, as we have to cheat here and
fight reality. Now solved by iterative smoothing? See do mapSDmedian4.

• weighting in varmaps by systemp. Although implemented by default, not well tested if it makes a
difference.

• no rigurous writeup of the effect of a gaussian interpolation of a signal sampled with another
gaussian beam. The resulting beam has been assumed to be the sum of the two beams (in the usual
quadrature).

• In addition to this: cone shaped interpolations in varmaps (mode=1) looks pretty horrible. Is that
really what it should look like.

• In June 2012, the primary beam of 10m was redefined from 1.073 to 1.210 arcmin if measured at 100
GHz. (see also CARMA memo 52). MIRIAD software was updated at that time to take advantage
of this.

Remaining Oddities

• cx323.1D 89NGC133.1: sinbad normalize=true does not seem to remove. high systemp flagging
was needed.

4-22 CHAPTER 4. MIS

HCN, 88.631847 GHz N2H
+, 93.173505 GHz HCO+, 89.188518 GHz

B1S 1.38 2.74 1.54
SERPM 3.89 3.22 8.16
L1451 (B1E) 1.31 0.96 2.61
SYS13 (N1333) 4.13 3.49 5.62
SERPS 1.39 2.90 1.01

Table 4.1: Single Dish cloud properties: peak temperatures in the cube. The noise in these cubes ranges
from about 10-30 mK.

