NEMO: a case study for AMSC 664

Peter Teuben
Astronomy Department
teuben@astro.umd.edu

URL: http://www.astro.umd.edu/nemo

URL: http://www.manybody.org
Collional and Collisionless Dynamics

STARLAB

NEMO
NEMO

• Observational Astronomy has many software packages (AIPS, IRAF, Gipsy, Figaro, ...)
 – Each telescope has specific calibration needs
 – Image processing is nearly always the same
 – A data interchange standard (FITS) emerged
 – The wheel was re-invented many times
 – Group Effort

• Theoretical Astronomy has not! (1986)
 – Individual Effort (still)
 – but: Virtual Observatory (2000 decadal survey)
Design

• *N-body integrator(s) with* many small tools, each performing a small well defined task
 – ? modern approach → python-like scripting ?
 – NEMO vs. tipsy approach

• Easy to use

• Easy to extend
 – Add your own code
 – Add foreign code
Design (cont'd)

- Uniform (command line) user interface
 - Good help facilities
 - Graphics vs. Command Line
- Portable binary (hierarchical) dataformat
 - endianism, floating point accuracy
 - Unix-like use of pipes
- Graphics: YAPP
- Dynamic function use (.so, .dll)
User Interface

- main(argc, argv) → nemo_main(void)
 - nemomain.c defines main()

- User interface:
 char *defv[] = {
 "out=???
 input file",
 "nbody=100
 particles",
 "VERSION=1.0
 9-apr-2004 PJT",
 NULL
 };

- Program vs. System keywords
User Interface (cont'd)

- System keywords
 - help=
 - Internal help vs. external (man pages, html)
 - debug=
 - dprintf(2,"N=%d Level=d Radius=%g\n",n,l,r);
 - error=
 - error("%d too large (MAXFOO=%d)",n,MAXFOO);
 - yapp=
 - Value depends on the library used at installation
User Interface (cont'd)

• Help
 – Internal help
 • (help=) comes with every NEMO executable
 – External help:
 • Standard unix man pages (and html formatted)
 – Man, tkman, xman, gman
 • Users and Programmers Guide
 • FAQ
File Format

• Binary Structured Files
 – Sequence of tagged items
 • Tag: name, type, dimension
 – Hierarchical
 – Always written in native endianism
 – Portable (detect endianism)
 – Transparently detect pipes (fname=-)

• User tools: tsf, rsf, csf, qsf
NEMO file formats
Graphics: YAPP

• Yet Another Plotting Package
 – Define a simple API that can be implemented by a number of popular graphics packages
 • pgplot (Caltech Astronomy)
 • plplot (sourceforge)
 • Mongo ($$$)
 • SM ($$$)
 • PS (nemo)
 • OpenGL
 • Null (nemo)
Dynamics Functions

- Interface to an efficient way to use dynamics functions (now implemented via dlopen(3))
 - **Snapshots**: bodytrans variables (e.g. xvar=x/z or evar='m/sqrt(x*x+y*y)'
 - **Orbits**: potential functions, so tools do not have to be recompiled for new potential. Uniform interface using potname=, potpars=, potfile= (also used in some Nbody integrators now)
 - **Tables**: fitting functions, only used in non-linear least squared fitting program (tabnllsqfit)
Building NEMO

- Autoconf + hierarchical makefile's
 - Single library (libnemo.a)
 - Lots of optional Alien packages in NEMOLIB
 - HDF, cfitsio, pgplot, gsl, vogl,
- Testfile's for regression testing
 - Not hierarchical, a script hunts for them and runs “make -f Testfile all”
 - Output can be compared to archived version
- NEMODAT contains
 - standard datasets
 - Benchmark data
NEMO

- A toolkit of libraries and tools (programs)
- Scripts provide the glue to do simulations and analysis
- Portable structured (binary) files (snapshot, orbit, image, table)
- Initial work by Barnes, Hut & Teuben (1986) [Teuben 1995]
- SRC: source: 193 KLOC, man: 33 KLOC files: 936
- USR: source: 860 KLOC, files: 4141
- Unix makefiles, autoconf, CVS
- Mostly C, and some C++ and Fortran
- Many user contributions
- Wishlist....

http://www.astro.umd.edu/nemo

Info and Download
NEMO: some public codes

- Nbody* (Aarseth) [usr]
- Ptreecode (Dubinski)
- PMCode (Klypkin)
- Gadget (Springel)
- AP3M/hydra (Couchman)
- Galaxy (Sellwood) [usr]
- Treecode (Hernquist) [usr]
- Treecode1 (Barnes) [usr]
- Tree++ (Makino) [usr]
- Vtc (Kawaii) [usr]
- Scfm (Hernquist) [usr]
- Multicode (Barnes) [usr]
- Flowcode (Teuben) [usr]
- Superbox (Richardson)
- YANC (Dehnen) [usr]
- gyrfalcON
Evolved exponential disk, rotated and inclined velocity field

```
NEMO example

mkexpdisk - 20000 rcut=2 | hackcode1 - disk4.out tstop=4
snaprotate disk4.out - 60,45 xz | \n  snapplot - times=2                                             (left panel)
  snaprotate disk4.out - 60,45 xz | \n  snapgrid - - zvar=vz moment=-1 times=2 | \n  ccdplot - contour=-1:1:0.2 blankval=0              (right panel)
```
Optimal N-body softening:
Seed=1,2,3,4

Dehnen & Teuben, 2004

IAU 208 : 12 July 2001, Tokyo
! /bin/csh -f
#

mkexpdisk out=$run.ini nbody=$nbody Qtoomre=$Qtoomre seed=$seed rcut=$rcut tab=t \
 headline="$*" time=0 > $run.tab

YancNemo in=$run.ini out=$run.snp \
 eps=$eps theta=$theta kernel=$kernel \
 tstop=$tstop step=$step hmin=$hmin give_pot=1 give_rhoe=1 > $run.yanc

set times=0:$tstop:$step
set weight="-phi*phi*phi"

loop over all times requested
rm -f $run.psi
foreach t (`nemoinp $times`)
 rm -f $run.snp.tmp
extract time & sort bodies by potential
 snaptrim $run.snp - times=t \
 snap_sort -- phi \
 snapmask $run.snp.tmp 0:$nfrac
align & get phase angles
 snaprect $run.snp.tmp . weight="$weight" > $run.tmp1
 set ex=('grep e_x $run.tmp1 | awk -F: '{print $2}"
 if ($#ex != 6) continue
also obtain axis ration of moments of inertia
 snapinert $run.snp.tmp - weight="$weight" tab=t > $run.tmp2
 set si=('cat $run.tmp2')
output: time psi Ixx Iyy Izz
end
Optimal N-body softening:
Seed=1,2,3,4

Dehnen & Teuben, 2004

Time Phi(t) b/a Phi(t)-model

Phases and orbital elements of a few selected objects are presented. The evolution of the system is shown in the time series of \(\Phi(t) \) and the ratio \(b/a \). The \(\Phi(t) \)-model shows the evolution of the system over time.
Optimal N-body softening
GRAPE-6 and baby-GRAPE-6

Tflops and Tbytes
Hayden Planetarium
Setup in the Hayden Planetarium
Dark time in the Dome
SpaceOrb motion control
Galaxy Modeling

➔ GIPSY, AIPS/AIPS++, NEMO, karma