Table of Contents

Name

orbwood - Orbit Spectral Analysis

Synopsis

orbwood in=in_orbit [parameter=value ...]

Description

orbwood analyzes orbits in terms of the Fourier transforms of the coordinates. If spectra are sufficiently linelike, they can be used to find the fundamental frequencies and differentiate between various orbital families (see also orbname(1NEMO) for an alternative approach).

The analysis of 3-dimensional orbits is still under development.

Parameters

The following parameters are recognized in any order if the keyword is also given:
in=in_orbit
Input orbit, must be in orbit(5NEMO) format. The number of steps in the orbit must be a power of 2, and must contain equal stepsizes. No default.
var=v1,v2,...
Variable(s) to select to fourier analyze. Valid names are: x, y, z, vx, vy, vz. At most NDIM can be selected, if NDIM are selected, orbwood will attempt to label and identify the lines. Default: x,y.
raw=out_table
Output table raw spectrum, if desired. The table will contain 3 columns which contain the angular frequency, amplitude and phase (degrees). Default: none.
maxlin=
Maximum number of lines to search for. [Default: 50].
fund=f1,f2,...
Override the fundamental frequencies assumed for this orbit. Note that the number of fundamental frequencies should be the same as number the number of variables in var=. Default: attempted to retrieve from the analyzed spectra.
fundmax=max_value
Maximum fundamental frequency to search for peaks in the auto- correlation spectrum. [Default: 20]
freqdiff=
Maximum frequency difference between two lines to consider them still the same line. This is used in counting occurences of peaks in the auto-correlation table. The output FREQ_DIFF will contain the number of occurences and the frequency of the auto-correlation table. [Default: 0.005].

Examples

Here an example shows how to create and analyze the loop orbit that is displayed in Figure 3 of Binney and Spergel (1982):
> mkorbit out=orb3 x=0.49 y=0.00 z=0 vx=1.4*sind(20) vy=1.4*cosd(20) vz=0 
        potname=log potpars=0,0.1,0.1,0.9
> orbint in=orb3 out=orb3.out ’nsteps=4096*10-1’ dt=0.01
        ndiag=4096 nsave=10 mode=leapfrog1
> orbwood in=orb3.out var=x,y
WOOD: (X) final relative resid = 0.00882583 using 11 lines
WOOD: (Y) final relative resid = 0.00889181 using 10 lines
      FREQ logAMP   PHASE       FREQ logAMP   PHASE 
    2.9485 -0.863 -0.3389     2.9485 -0.712 -1.9097 
    1.3576 -1.711 -1.0864     1.3576 -1.866  0.4844 
    7.2545 -3.738  1.3774     7.2545 -3.588 -0.1934 
    2.9560 -5.064  1.2586     2.9560 -4.913 -0.3123 
    8.8454 -5.206 -1.0167     8.8454 -5.072  3.6957 
    1.3636 -5.308  0.8119     1.3636 -5.463  2.3827 
    0.2333 -5.618  1.8340     0.2333 -5.897  0.2632 
    5.6636 -6.009  0.6298     2.9309 -6.231 -1.4457 
    4.5394 -6.327  0.4087     4.5394 -6.404 -1.1621 
    2.9309 -6.382  0.1251     2.9339 -6.615  1.0800 
    2.9339 -6.766  2.6507          -      -       - 
LABEL: fund(1) = 2.94846
LABEL: fund(2) = 2.94846

See Also

orbname(1NEMO) , orbint(1NEMO) , mkorbit(1NEMO) , orbit(5NEMO)


J. Binney & D. Spergel 1982. ApJ 252, 308-321.
J. Binney & D. Spergel 1984.  MNRAS 206 159-177.
D. Wood, 1984.  J. Appl. Math 33, 229.
v=1.4 and E=-0.4 are not consistent for the BS82 example above. My example could also have had v=1.404204003, to get to an exact energy E=-0.4, BS82 isn’t clear if v or E was taken exactly.

Files


orbwood.c (main) wood.c, label.c (functions)
realft.c four1.c (numerical recipes functions)

Author

Peter Teuben

Update History


???              Original program              David Wood
sep-1982          mods                        David Spergel
aug-1983    mods                        James Binney
oct-1986    V2d.1 2D version            David Spergel
dec-93       V3.0 in C (NEMO) + 3d mods    Peter Teuben


Table of Contents