Content-type: text/html Manpage of micsph

micsph

Section: User Commands (1)
Index Return to Main Contents
 

NAME

micsph - Calculate spherical microturbulent models  

PERSON RESPONSIBLE

lgm  

CATEGORIES

models  

DESCRIPTION

Calculates spherical microturbulent models for linear, asymmetric, and symmetric top molecules.  

PARAMETERS

mol
Name of molecule. Known molecules are CO, CS, etc. No Default.
iso
Isotope of molecule if other than main isotopic species. Default is main isotopic species.
nlayer
Number of radial layers in spherical model, specification of input mode (either ' ' or 'file'), and input data file name (if mode='file'). The number of layers can be from 2 to MAXMOD (currently 20). The input mode for model radii, densities, fractional abundances, and kinetic temperatures can be either power-law specification using the key words below or a file specifying each in the format (Radius Density Xmol Tkin):
        2.9250e16 6.60E6 4.0e-10 98.4
        3.7021e16 4.86e6 4.0e-10 45.5
If file input is selected, the keywords rad, den, xmol, and tkin are ignored. Default: nlayer = 3.
rad
Two numbers representing the inner and outer radius of the model plus either log or lin indicating how your want the models distributed. If only one number is entered, that value is used for the inner radius and the outer radius is nlayer time the inner radius. Default: rad = 3.0e16, nlayer*3.0e16, lin
den
Two numbers representing the densities at the inner radius and the power law index for the relation: n = n(rinner)*(r/rinner)**a. If only one number is entered, the index is assumed to be zero. The densities at model radii between the inner and outer radii are interpolated assuming the power law dependence. Default: den = 1.0e4,0.0
xmol
Two numbers representing the molecular fractional abundance at the inner radii and the power law inden for the relation: x = x(rinner)*(r/rinner)**a. If only one number is entered, the index is assumed to be zero. Fractional abundances for model radii between the inner and outer radii are interpolated assuming the power law dependence. Default: xmol = 1.0e-9,0.0
tkin
Two numbers representing the gas temperature at the inner radii and the power law index for the relation: T = T(rinner)*(r/rinner)**a. If only one number is entered, the index is assumed to be zero. The temperature is interpolated as a power law between the inner and outer radii. Default: tkin = 20.0,0.0
hole
Logical indicating whether the density should be set to zero inside the inner radius (true) or extrapolated inward with the same value as at the inner radius (false). Default is false.
dvel
Doppler velocity line width (FWHM) in km/sec. Default: dvel = 1.0
tbkg
Blackbody temperature for background radiation field in all transitions. This is normally set to correspond to the cosmic background temperature. Default: tbkg = 2.78.
conv
Fractional change criterion applied to populations to decide if the model has converged to a solution. This number is compared to the quantity [(NEW POP)-(OLD POP)]/(NEW POP) for each molecular level and each layer. If change is too large, another iteration is done. Allowed range of conv is from 0.1 to 0.0001. Default: conv = 0.005
iter
Maximum number of iterations allowed. If the model does not converge in this number of iterations, the calculation is stopped and the results printed with a warning message about the non-convergence Default: iter = 25
pops
Name of miriad file were level populations for each radii are to be written. No default.
print
Parameter which control level of printed output.
   0 = minimum output which is useful when running grids
   1 = normal output level
   2 = detailed output level - used for debugging and error checking
log
Name of log file were full printed output for human consumption is written. Default is to write to screen.


 

Index

NAME
PERSON RESPONSIBLE
CATEGORIES
DESCRIPTION
PARAMETERS

This document was created by man2html, using the manual pages.
Time: 18:35:38 GMT, July 05, 2011